Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 33(2): 223-8, Feb. 2000.
Article in English | LILACS | ID: lil-252298

ABSTRACT

Involvement of the caudal raphe nuclei (raphe pallidus, RPa; raphe magnus, RMg, and raphe obscurus, ROb) in feeding behavior of adult rats was studied by measuring c-Fos protein expression, in animals submitted to the "meal-feeding" model of food restriction in which the rats were fed ad libitum only from 7:00 to 9:00 h, for 15 days. The experimental groups submitted to chronic fasting, named 'search for food' (SF), 'ingestion of food' (IF) and 'satiety of food' (SaF) were scheduled after a previous study in which the body weight and the general and feeding behaviors were evaluated by daily monitoring. Acute, 48-h fasting (AF) was used as control. In the chronic group, the animals presented a 16 percent reduction in body weight in the first week, followed by a continuous, slow rise in weight over the subsequent days. Entrainment of the sleep-wake cycle to the schedule of food presentation was also observed. The RPa was the most Fos immunopositive nucleus in the chronic fasting group, followed by the RMg. The ANOVA and Tukey test (P<0.05) confirmed these results. The IF group was significantly different from the other three groups, as also was the number of labeled cells in the RPa in SF and IF groups. Nevertheless, no significant difference was observed between RMg and RPa, or RMg and ROb in the SaF and AF. However, it is interesting to observe that the groups in which the animals were more active, searching for or ingesting food, presented a larger number of labeled cells. These results suggest a different involvement of the caudal raphe nuclei in the somatic and autonomic events of feeding behavior, corroborating the functions reported for them earlier


Subject(s)
Animals , Rats , Male , Feeding Behavior/physiology , Proto-Oncogene Proteins c-fos/analysis , Raphe Nuclei/physiology , Proto-Oncogene Proteins c-fos/physiology , Proto-Oncogene Proteins c-fos/ultrastructure , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL